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With recognition that chemical disruption of the biosynthesis 
of amino acids can lead to plant death, the enzymes from these 
pathways have become the target for rational design of inhibitors 
as potential herbicides.1 Contrary to an increasing interest in 
the enzymes of biosynthesis of essential amino acids such as 
aromatic amino acids2 and branched-chain amino acids,3 

enzymes of histidine biosynthesis have drawn less attention until 
recently.4 Imidazole glycerol phosphate (IGP) dehydratase (EC 
4.2.1.19) is an enzyme involved in the histidine biosynthesis 
pathway. It catalyzes the conversion of D-erythro-(2/?,3S)-
imidazole glycerol phosphate (IGP) to imidazole acetol phos­
phate (LAP) (Scheme I).45 This is a unique dehydration reaction 
characterized by the unusual mechanistic feature that the 
substrate requires no imine or carbonyl group a to the departing 
hydrogen.67 Since IGP dehydratase plays a key role in the 
biosynthesis of an essential amino acid, it is of interest to 
examine its inhibitors as potential herbicides.8,9 We now 
disclose the design and synthesis of inhibitors based on a plant 
IGP dehydratase isolated from wheat germ. During the course 
of our studies, Cox and his co-workers have reported a closely 
related work using recombinant yeast IGP dehydratase expressed 
in Escherichia coli.10 

Although its high stereoselectivity7 and substrate specificity11 

have been reported, the mechanism of the IGP dehydratase 
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reaction is unknown. Due to the lack of detailed mechanistic 
studies, our inhibitor design was based on substrate analogues 
(Scheme 2). The simplest IGP analogue examined first was 
2-deoxy-IGP (1), which showed a very weak inhibition (IC50 
= 2 mM) for the wheat IGP dehydratase (Km = 360 ^M).12'13 

Next, we investigated the systematic replacement of the 
functional groups of 1 [(a) imidazole and (b) phosphate group] 
with their possible isosteric groups. Thus, replacement of the 
imidazole moiety of 1 with 1,2,4-triazole led to a remarkable 
(>60 times) enhancement of inhibitory activity (2; IC50 = 32 
/^M).14 On the other hand, since the phosphate moiety of 1 
would be of scant utility for herbicides due to hydrolyzing 
phosphatases often encountered in plant tissue, it was replaced 
with the more stable phosphonate group.15 This structural 
change gave rise to a 5-fold increase of its inhibitory potency 
(3; IC50 = 400 /<M). To our surprise, combination of both 
changes resulted in a remarkable synergetic effect in inhibitory 
enhancement (>15 000 times compared with I) to give 4, a 
competitive inhibitor with high binding affinity (IC50 =130 
nM; Ki = 40 ± 6.5 nM, KJK{ = 9.0 x 103).16 

In order to examine the effects of the C(2)-hydroxyl group, 
the anti- and syn-diols (5 and 6, Figure 1) were stereoselectively 
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synthesized via osmium-catalyzed dihydroxylation17 of the 
corresponding (Z)- and (£)-allylphosphonate diethyl esters. 
Although syn-6 (IC50 = 1 1 0 nM) was a much better inhibitor 
than anti-5 (IC50 = 1.45 fiM), its inhibitory activity was only 
slightly improved compared to that of 4. These results show 
that the introduction of the second C(2) hydroxy group does 
not dramatically boost the binding ability of inhibitors. 

Further optimization of inhibitory activity of 4 was achieved 
by freezing its conformational flexibility. As the conforma-
tionally restricted analog of 4, the cyclohexane derivatives (7 
and 8) were synthesized as shown in Scheme 3. Addition of 
5-lithio-l-trityl-l,2,4-triazole,18 prepared from l-trityl-1,2,4-
triazole (9) and n-BuLi, to diethyl 3-oxocyclohexylphosphonate 
(10) gave a 9:1 mixture of l i t and l i e . Deprotection of these 
adducts afforded trans- and cw-phosphonates 7 and 8, respec­
tively. The 1H NMR analysis of 7 and 8 revealed that the 
phosphonic acid group is positioned equatorially in both 
isomers.19 While cis-S showed a markedly weaker inhibition 
for IGP dehydratase (IC50 = 10 /XM), trans-1 was a 4-fold better 
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inhibitor (IC50 = 40 nM, K1= 10 ± 1.6 nM) than 4. This 
finding suggests that the inhibitory activity of 4 may be due to 
its extended conformer. The individual enantiomers of 7 could 
be obtained by HPLC separation of its precursor l i t using a 
chiral column20 followed by deprotection. The two enantiomers 
thus obtained showed remarkably different inhibition; (+)-7 
(IC50 = 18 nM) derived from ( - ) - l l t , and (-)-7 (IC50 = 1800 
nM) derived from (+)-llt . The absolute configuration of (+)-7 
was determined by the X-ray analysis of its protected form (—)-
l i t , confirming that the potent inhibitor (+)-7 has the (1R,3R)-
configuration as shown in Figure 2. 

Examination of the herbicidal activity of these inhibitors 
showed that 4 and 7 were slow-acting broad spectrum herbicides 
at postemergent application rates of 1—4 kg/ha.21 The triazole 
phosphonates developed in this study are a new class of 
substrate-based inhibitors of IGP dehydratase and show promis­
ing herbicidal activities. This is the first example of a rationally 
designed herbicide based on the inhibition of an enzyme 
involved in histidine biosynthesis, confirming the principle that 
disruption of histidine biosynthesis can lead to plant death.22 
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